Single Subject Randomization Design for CAS Intervention Research

I have recently returned from the very excellent Childhood Apraxia of Speech Symposium sponsored by the Childhood Apraxia of Speech Association of North America and held in Atlanta last month. The scientific presentations were wonderful and I hope to have posts related to many of them over the next few months. I begin by highlighting Larry Shriberg’s presentation as it relates to my current CASANA funded intervention study and I am, with some excitement, analyzing the data from the first cohort of participants this week since it is our winter break from teaching.

Dr. Shriberg presented data recently published in Clinical Linguistics and Phonetics (Shriberg, Lohmeier, Strand & Jakielski, 2012). In this paper the authors describe the use of the Syllable Repetition Task (SRT) for the identification of CAS. The paper, the test, and all the information you need for scoring and interpreting the test data is available for download at The Phonology Project website. The SRT consists of 18 items comprised of two to four syllables made up of the consonants /m, n, b, d/ and the vowel /ɑ/ and thus it is designed explicitly for children with speech delay. The task was administered to 4 quite large samples of children: Group 1, Typical Speech, Typical language; Group 2, Speech Delay, Typical Language; Group 3, Speech Delay, Language Impairment; and Group 4, CAS with this last group subdivided into idiopathic and neurogenetic etiological subtypes for some analyses. The test results were presented in the form of four scores: Competence, total percentage of correctly repeated consonants overall; Encoding Processes, percentage of within-class manner substitutions; Memorial Processes, ratio of sounds correct in 3-syllable-versus-2-syllable items; Transcoding processes, percentage of items containing one or more addition errors, subtracted from 100 for directional clarity. Most interestingly, the latter three scores were not correlated with each other within any of the groups although they were all moderately correlated with the competence score. The CAS group showed worse performance than the other three groups on all of these measures although their performance on the Transcoding processes measure was most distinctive. The diagnostic usefulness of the Transcoding score is much enhanced by also considering aspects of the children’s prosody in connected speech (inappropriate pauses, slow rate, lexical or phrasal stress errors). In conclusion, these findings were taken as evidence that CAS is a multiple domain disorder with low encoding scores reflecting incomplete or poorly formed phonological representations, low memorial scores reflecting difficulties with phonological memory, and low transcoding scores reflecting a motor planning/programming deficit. Given that the paper presents group data, and that the encoding, memorial and transcoding scores are not correlated with each other, it is not clear however that all children with CAS will show difficulties in all of these areas. It seems possible if not likely that there will be considerable heterogeneity within this population with different children showing variant profiles across these three speech processes. The purpose of our study is to consider this heterogeneity by examining response to three interventions in individual subjects.

In a previous post I mentioned an alternative to traditional single subject designs that does not require a stable baseline while allowing for statistical analysis. We are using one form of this design in this study, the single subject randomization design, more specifically set up as a randomized block experiment as described in my paper on the application of these designs to communication disorders research (Rvachew, 1988). We have six children participating in the study this winter and 3 more enrolled for the spring. I provide partial data for one child in this post simply as a way of demonstrating the usefulness of this design for research with low incidence disorders. The child is school age with borderline verbal and nonverbal IQ, speech delay, and ADHD. Apraxia of speech was confirmed by administration of the Kaufman Speech Praxis Test and maximum performance tasks revealing normal single syllable repetition rates but an inability to sequence three syllables consistently and at a normal rate. The results of the Syllable Repetition Task indicated an extremely low competence score despite encoding and memorial processing within the average range for his age. He did have difficulties with transcoding however as indicated by the characteristic addition of nasal consonants.

Three speech targets were selected for this boy: word internal codas, word-initial /l/ clusters, and word initial velar stops (with baseline performance in single word naming being 50, 29, and 33 percent correct respectively). All targets were addressed via pseudowords linked to nonsense referents in a functional context. All targets received 20 minutes of concentrated practice per week using the integral stimulation hierarchy as described by Christine Gildersleeve-Neuman. However, the prepractice condition (which was implemented for 20 minutes prior to the practice session) varied for each target. The three prepractice conditions being compared in this study were randomly assigned to the targets with the following result: word internal codas were treated using input oriented prepractice procedures, word-internal /l/ clusters were associated with sham prepractice procedures (control condition) and velar stops were treated with output oriented prepractice conditions. The input oriented prepractice conditions included auditory bombardment and error detection tasks as described by Rvachew and Brosseau-Lapre (see also Chapter 9 of our book, http://www.pluralpublishing.com/publication_dpd.htm). The output oriented procedures are described by Dodd and colleagues for improving the child’s ability to independently build a phonological plan for the word by linking syllables and phonemes to graphical cues and then chaining the subword units. Phonetic placement was also incorporated into this condition as needed.

Raw Session and Next Day Probe Scores for One Child By Treatment Condition

Raw Session and Next Day Probe Scores for One Child By Treatment Condition

In-keeping with the randomized block design, the child received three treatment sessions per week, with each treatment condition/treatment target pair assigned at random to one of the three days on a week by week basis. Two outcome measures were recorded: the child’s responses to imitative phrase probes that were administered at the end of the session to assess learning during a given intervention session, and the child’s responses to imitative phrase probes that were administered at the beginning of the next session to assess maintenance of learning. The child’s performance on these probes is shown on the figure below: pastel bars are the session probes indexing session performance and solid bars are the next day probes indexing maintenance of learning to the next session. Different colours represent different prepractice conditions. These probe scores were submitted to a nonparametric randomization test as described in Rvachew (1988) with the results indicating that there was no difference in probe performance at the end of each session as a function of prepractice condition, F(2,5) = 1.19, p = .392. However, there is a significant effect of prepractice condition when considering next day probe performance, F(2,5) = 23.01, p = .002. Now, I am going to make you crazy by not revealing which prepractice condition is associated with each colour! The reason is that this is just one child and I want to see the results for the other children –  I have observed the responses of the other children and have reason to believe that in fact there are differences in actual learning as a function of prepractice condition but we will feel more confident after having blinded transcriptions of probe data from more children. It should be obvious with this design that there are many other variables that can influence the outcome such as intrinsic differences in the difficulty of the targets, differences associated with the days of the week, and differences in clinician (although some of the same people were in the room during every session, the treating clinician was not the same during every session). Therefore we need to replicate the result many times before we feel confident interpreting these results. However, I wanted to introduce readers to the SRT, the notion of CAS as a multiple domain disorder, and the single subject randomization design as a way of looking at the relationship between response to intervention and underlying psycholinguistic profile. I hope that you will stay tuned – we hope to take data from the first six children to ASHA13.

Advertisements
Leave a comment

9 Comments

  1. Amanda

     /  March 19, 2013

    Very exciting study. Looking forward to hearing more about it as you develop more results!

    Reply
  2. Gabrielle Miller

     /  December 11, 2015

    Hi Susan,

    I tried to access your 1988 paper on Randomization and Single-Subject Design via the link provided in your blog post but the link is broken. I was able to find the paper online as “read only” but can’t seem to find it for download. Thank you! It is a great paper!

    Reply
    • Thank you for informing of the broken link. I have fixed it. Tanya Matthews and I have submitted a tutorial demonstrating the application of this important design with both hypothetical data and with real demonstrations from our research project. It is an incredibly powerful design. I don’t know how long it will take and how many journals we will have to go through to get it published though! It is always difficult to get acceptance for something new even when it is old if you get my drift.

      Reply
  3. Dear Dr. Rvachew, just reading your blogs ……its like reading a sys.rev or meta-analysis, an amazing a wealth of synthesized information and clinically relevant – while at the same time on the ball with EBP. Love it! cant wait to read more!

    Reply
    • Thank you for that feedback, I am happy that you are enjoying the posts. Feel free to comment on issues or ask questions as you go along. It is interesting hear about how these service delivery issues are tackled around the world. Susan

      Reply
  1. Does speech therapy work? | Developmental Phonological Disorders
  2. Still no evidence for PROMPT | Developmental Phonological Disorders
  3. Auditory Motor Integration Intervention for CAS | Developmental Phonological Disorders
  4. CAMs & Speech Therapy | Developmental Phonological Disorders

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: