AOS, CAS and STM

I greatly enjoyed this new Frontiers in Neuroscience paper by Hickok and colleagues called “Partially overlapping sensorimotor networks underlie speech praxis and verbal short-term memory: Evidence from apraxia of speech following acute stroke”. These researchers evaluated 76 patients during the acute phase of their stroke using behavioral and MRI measures. They found a strong relationship between apraxia (AOS) and verbal short- term memory (vSTM) difficulties as well as weak relationships between aphasia and AOS and vSTM upon behavioral testing. For patients with AOS, the MRIs revealed tissue damage along a sensorimotor network of motor-related areas and sensory-related areas. The motor related areas that were implicated were as follows: primary motor cortex (proposed site of motor programs for opening and closing vocal tract gestures that correspond roughly to consonant and vowel phonemes); pars opercularis (a part of Broca’s area involved in phonological processing and suppression of response tendencies);  premotor cortex (planning and sequencing of speech units and sensory guidance of movement; motor programs for syllables); and insula (specialized for motor planning of speech). The sensory-related areas  associated with AOS were primary somatosensory cortex (site of  somatosensory targets for speech); secondary somatosensory cortex (sensorimotor integration); parietal operculum (sensory motor interface for speech); and auditory cortex (processing of auditory information; auditory targets for speech). The areas associated with vSTM deficits overlapped those associated with AOS but only in the motor-related areas, specifically pars opercularis and par triangularis (i.e., Broca’s area), premotor cortex and primary motor cortex.

With regard to the network associated with AOS, the authors concluded that the findings demonstrate “that the targets for speech are sensory in nature” and that “motor control generally and speech motor control specifically is dependent on sensorimotor integration”. I found these conclusions to be interesting in view of our interventions studies with children who have childhood apraxia of speech. As I reported in a previous blog, we are having success with an approach in which we encourage strengthening of both articulatory-phonetic and acoustic-phonetic representations for target words and the connections between them.

With regard to vSTM, the authors indicate that “the involvement of motor areas is predicted as vSTM involves an articulatory rehearsal component”. They seem  surprised however that “posterior, sensory related regions” were not implicated in this study as correlates of the hypothesized “storage” component in short-term memory. This finding reminded me of a paper I wrote in 2008 in which I pointed out that children’s nonword repetition performance, supposedly a measure of vSTM, factors with speech production accuracy rather than language ability in large scale studies involving children with either typical or atypical language development. I interpreted these findings in relation to a connectionist model of working memory proposed by MacDonald and Christensen (2002). According to this model there is no short term memory store per se because  working memory is not differentiated from linguistic knowledge and processing. Individual differences in working memory task performance reflect differences in precision of phonological representations and processing efficiency due to experiential and biological factors. The processes and representations involved in working memory are the same as those used in speech planning.  Many of the children that we are working with have difficulty planning an utterance – I have described these children with phonological planning difficulties in a previous blog. The children have difficulty with consistent repetition of nonwords and complex real words. The successful intervention for these children involves providing multimodal external cues to support the child’s efforts to construct and execute a plan to produce new words, as described in a previous blog. It is important that the SLP avoid providing an auditory  model for imitation by the child however although the SLP may imitate the child’s production to reinforce successful attempts or correct failed attempts.

Hickok et al interpret their findings in light of their hierarchical model although I remain uncertain about this notion of a hierarchical organization of these components just because I can never quite sort out what ‘higher” versus “lower” means when placing these kinds of components in a hierarchical relationship.  The importance of acquiring knowledge of different forms of linguistic representation – acoustic, articulatory, phonological and semantic – and linking across multiple representations to achieve functional goals has implications for typical and atypical language development however.

Tanya and I will be discussing these issues further (with video demonstrations) at ASHA2014:

Topic Area: Speech Sound Disorders in Children Session Number: 1037 Title: Differential Diagnosis of Severe Phonological Disorder & Childhood Apraxia of Speech Session Format: Seminar 2-hours Day: Thursday, November 20, 2014 Time: 10:30 AM ─ 12:30 PM Author(s): Susan Rvachew and Tanya Matthews

Advertisements
Leave a comment

1 Comment

  1. Using Orthographic Representations in Speech and Language Therapy | Developmental Phonological Disorders

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: